Benha University

Faculty Of Engineering at Shoubra

ECE 122

Electrical Circuits $(2)(2016 / 2017)$

Dr: Noatar Hsherinini

motaz.ali@feng.bu.edu.eg

Reference Chapter 16

Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/TheoryAndProblemsOfElectricCircuits

Circuits Transient Response

$>$ When a circuit is switched from one condition to another either by a change in the applied voltage or a change in one of the circuit elements, there is a transitional period during which the branch currents and voltage drops change from their former values to new ones
$>$ After this transition interval called the transient, the circuit is said to be in the steady state.
$>$ Transient analysis: study of circuit behavior in transition phase.
> The steady state values can be determined using circuit laws and complex number theory.
$>$ The transient is more difficult as it involves differential equations.

$$
a_{n} \frac{d^{n} x(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} x(t)}{d t^{n-1}}+\ldots+a_{0} x(t)=f(t)
$$

$>$ General solution to the differential equation:

$$
x_{p}(t) \quad x(t)=x_{p}(t)+x_{c}(t)
$$

- Complementary solution (or natural response)
- Represent the transient part of the solution, which is the solution of the next homogeneous equation:

$$
a_{n} \frac{d^{n} x(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} x(t)}{d t^{n-1}}+\ldots+a_{0} x(t)=0
$$

First-Order and Second-Order Circuits

» First-order circuits contain only a single capacitor or inductor
» Second-order circuits contain both a capacitor and an inductor

Differential equations Solutions

> Two techniques for transient analysis that we will learn:
\checkmark Differential equation approach.
\checkmark Laplace Transform approach.
$>$ Laplace transform method is a much simpler method for transient analysis

$1^{\text {st }}$ Order R-L

First-Order RL Transient Step-Response

$>$ The switch " S " is closed at $\mathrm{t}=0$
> Apply KVL to the circuit in figure:

$$
R i+L \frac{d i}{d t}=V
$$

$>$ Rearranging and using " D " operator notation :

$$
\left(D+\frac{R}{L}\right) i=\frac{V}{L} \quad \text { This Equation is a first order, linear differential equation }
$$

1. Complementary (Transient) Solution

The auxiliary equation is: $\quad m+\frac{R}{L}=0$

$$
i=A e^{m t}=A e^{\frac{-R}{L} t} \quad \tau=\frac{R}{L} \quad \text { Time constant }
$$

2. Particular (Steady-State) Solution

The steady-state value of the current for DC source is :

$$
I_{s s}=\frac{V}{R}
$$

First-Order RL Transient Step-Response

$>$ The total solution is:

$$
\begin{array}{r}
i=A e^{\frac{-R}{L} t}+\frac{V}{R} \\
0=A+\frac{V}{R}
\end{array}
$$

$$
i=-\frac{V}{R} e^{-(R / L) t}+\frac{V}{R}=\frac{V}{R}\left(1-e^{-(R / L) t}\right)
$$

> The voltage across the resistor is:

$$
v_{R}=R i=V\left(1-e^{-(R / L) t}\right)
$$

- The voltage across the inductor is:

$$
v_{L}=L \frac{d i}{d t}=L \frac{d}{d t}\left\{\frac{V}{R}\left(1-e^{-(R / L) t}\right)\right\}=V e^{-(R / L) t}
$$

$$
v_{R}+v_{L}=V\left(1-e^{-(R / L) t}\right)+V e^{-(R / L) t}=V
$$

$1^{\text {st }}$ Order R-L

Alternating Current Transients

RL Sinusoidal Transient

$$
\begin{gathered}
R i+L \frac{d i}{d t}=V_{\max } \sin (\omega t+\phi) \\
\left(D+\frac{R}{L}\right) i=\frac{V_{\max }}{L} \sin (\omega t+\phi)
\end{gathered}
$$

1. Complementary (Transient) Solution is the solution of the homogeneous $1^{\text {st }}$ order DE

The same as before, The auxiliary equation is :

$$
m+\frac{R}{L}=0
$$

The complementary function is $i_{c}=c e^{-(R / L) t}$
2. Particular (Steady-State) Solution

The steady-state value of the current for ac source is :

$$
I_{s s}=\frac{V_{\max }}{\sqrt{X_{L}^{2}+R^{2}}} \operatorname{Sin}\left(w t+\phi-\tan ^{-1}(\omega L / R)\right)
$$

Alternating Current Transients

RL Sinusoidal Transient

The complete solution is

$$
i=i_{c}+i_{p}=c e^{-(R / L) t}+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\omega t+\phi-\tan ^{-1} \omega L / R\right)
$$

Use the initial condition to find the value of c

$$
\begin{gathered}
i_{0}=0=c(1)+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1} L / R\right) \\
c=\frac{-V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1} \omega L / R\right)
\end{gathered}
$$

Substituting by the constant values, we get:

$$
i=e^{-(R / L) t}\left[\frac{-V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\phi-\tan ^{-1} \omega L / R\right)\right]+\frac{V_{\max }}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\omega t+\phi-\tan ^{-1}{ }_{\omega} L / R\right)
$$

Examples

Examples

A series $R L$ circuit with $R=50$ ohms and $L=10 \mathrm{~h}$ has a constant voltage $V=100 \mathrm{v}$ applied at $t=0$ by the closing of a switch. Find (a) the equations for i, v_{R} and v_{L}, (b) the current at $t=.5$ seconds and (c) the time at which $v_{R}=v_{L}$.
(a) The differential equation for the given circuit is

$$
50 i+10 \frac{d i}{d t}=100 \quad \text { or } \quad(D+5) i=10
$$

the complete solution is $\quad i=i_{c}+i_{p}=c e^{-5 t}+2$
At $t=0, i_{0}=0$ and $0=c(1)+2$ or $c=-2$. Then

$$
\begin{gathered}
i=2\left(1-e^{-5 t}\right) \\
v_{R}=R i=100\left(1-e^{-5 t}\right) \\
v_{L}=L \frac{d i}{d t}=100 e^{-5 t}
\end{gathered}
$$

Examples

(b) Put $t=.5 \mathrm{sec}$ in (8) and obtain $i=2\left(1-e^{-5(.5)}\right)=2(1-.082)=1.836 \mathrm{amp}$.
(b) For the two voltage to be equal:
each must be 50 volts since the applied voltage is 100,

$v_{L}=50=100 e^{-5 t}$.
$e^{-5 t}=.5$ or $5 t=.693$,
$t=.1386 \mathrm{sec}$.

Example (2)
In the series circuit shown in Fig. 1 the switch is closed on position 1 at $t=0$, thereby applying the 100 volt source to the RL branch, and at $t=500 \mu \mathrm{sec}$ the switch is moved to position 2. Obtain the equations for the current in both intervals and sketch the transient.
, at Pos. 1

at $t=0 \quad i_{0}=0 \quad A=-1$

cop. sol

$$
\begin{aligned}
& D=0 \quad i=1 \\
& \text { PhI } \\
& 0=M a+5 \cdots \rightarrow D=-500 \\
& \therefore A e^{-50 t}+1=l_{t}
\end{aligned}
$$

for $\quad 0<t<t_{1}$

$$
\text { at } t=500 \mu_{k c} \quad \lambda=1-e^{-\overline{5 \times \gamma 50 \mu M}}=0.221 \mathrm{Ap}
$$

Swith Now at pusition?, Usone $=50 \mathrm{~V}$ $\therefore \quad 50=100 i+0.2 d i / d t \quad$ or $(D+500)=250$

$$
i_{2}=0.5+B e^{-s_{0} t_{2}}
$$

where $t_{2}=t-t_{4}$ Sooms

$$
\text { at } t=t 1, t_{2}=0 \quad, i_{2}=0.221 \mathrm{~A}
$$

$$
\therefore \quad 0.22 A=0.5+B \quad B \quad B=-0.279
$$

for $t>t_{1}: \quad l_{t 2}=0.5-0.279 e^{-500\left(t-t_{1}\right)} \sqrt{500 \mu \mathrm{~m}}$

\qquad

Example (3)
A series $R L$ circuit with $R=50$ ohms and $L=0.2 H$ has a sinusoidal voltage source $v=150$ sin $(500 t+\varnothing)$ applied at a time when $\varnothing=0$. Find the complete current.

$$
\begin{gathered}
R i+L d i / d t=2 \\
50 i+0.2 d i / d t=150 \sin \operatorname{sont} \\
\therefore(D+250) i=750 \sin 5004 \\
\rightarrow \text { conqulamentrysot }
\end{gathered}
$$

